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A b s t r a c t. X-ray computed tomography soil studies rely on 
image analysis procedures that commonly begin with a thres- 
holding step which is prone to errors and leads to uncertainty 
in the deduced values of soil characteristics, e.g., total porosity, 
specific surface or simulated saturated water conductivity. In this 
paper, four 3D images of soil cores were thresholded using two 
different algorithms. Total porosity and specific surface were 
determined for binarized images whereas saturated water con-
ductivity was numerically estimated using the Navier-Stokes 
equation-based modelling. The study shows that an errone-
ous thresholding step leads to uncertainty in the determination 
of soil pore system characteristics and saturated water conduc-
tivity estimation. The lowest relative error in the total porosity 
determination, which was obtained in our study, was 15%, and 
the highest 40%. The results of this study demonstrate that errors 
related to thresholding may have a huge impact on the estima-
tion of saturated hydraulic conductivity in soils, easily reaching 
a relative error of 50% of the saturated water conductivity refe- 
rence value. Even small shifts in the threshold level can cause 
huge changes in saturated water conductivity estimation (a thres- 
hold shift by 6.7% for sample 2 analysed in the study caused 
more than a two-fold increase in the estimated value of saturated 
hydraulic conductivity).

K e y w o r d s: X-ray CT, soil porosity, thresholding, water 
conductivity

INTRODUCTION

X-ray computed tomography (CT) is a non-destructive 
imaging technique which can be used to study soil proper-
ties related to soil structure, i.e. soil pore space imaging. CT 
may also be used for imaging the whole soil core samples 
where a voxel size between 20 µm and 50 µm is achieved 
(Jarvis et al., 2017; Rab et al., 2014; Vaz et al., 2011). 
A resolution of this order allows for macropore observation 
(Jarvis, 2007; Katuwal et al., 2018; Müller et al., 2018) and 
root visualization (Daly et al., 2018; Sander et al., 2008). 
However, it can also be used for imaging soil aggregates 

with a voxel size of 1 µm or smaller (Józefaciuk et al., 
2015; Voltolini et al., 2017b). A 3D image obtained with 
this technique, following its processing, allows researchers 
to examine the inner structure of soil, and to collect infor-
mation about pore distribution (Hu et al., 2015) and pore 
properties, such as shape factors (Elliot et al., 2010), con-
nectivity (Sleutel et al., 2008) or pore circularity (Yang et 
al., 2018). The link between soil cores macroporosity and 
saturated water conductivity has been of special interest 
(Gerke, 2012; Larsbo et al., 2016; Müller et al., 2018).

In addition to the abovementioned soil characterization 
options which utilize CT, it is possible to model transport 
properties in porous materials using spatial models based 
on CT 3D images. CT-based modelling is an established 
approach with various applications, including fluid trans-
port (Bultreys et al., 2016; Jiang et al., 2017; Starnoni et 
al., 2017), fluid-microstructure interaction (Lesueur et al., 
2017), petrophysical transport (Liu et al., 2015), immisci-
ble two-phase flow (Liu and Wu, 2016), reactive transport 
(Menke et al., 2017) or carbonate dissolution (Pereira 
Nunes et al., 2016). The use of real soil structures for 
building models allows researchers to better understand the 
pore-scale processes (Daly et al., 2017, 2018; Wildenschild 
and Sheppard, 2013; Zhang et al., 2016).

However, both the CT-based modelling and the soil 
characterization methods based on 3D image analyses 
may be inaccurate. A crucial step in the analysis of CT soil 
images involves segmentation which is used to divide a 3D 
image into solid particles and pore-space. Uncertainty relat-
ed to threshold level determination is a common problem in 
the image analysis practice (Baveye et al., 2010; Iassonov 
et al., 2009). This is especially common when the pore-
space determination is a result of segmentation although 
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one might expect vast differences in the obtained results, 
and possibly a high impact on the results of modelling 
based on pore-space geometry. The choice of the segmen-
tation method has a significant impact on the calculation 
of soil parameters, such as porosity (Baveye et al., 2010). 
The proper segmentation of a 3D image into solid and pore-
space is important to create the right 3D pore-space model. 
The segmentation step may also be influenced by the image 
filtering process preceding binarisation (Smet et al., 2018).

There is no standard procedure for image segmenta-
tion because of the diversity of porous materials. A 3D CT 
image consists of voxels of different gray values, reflect-
ing the X-ray absorption in a given space. Therefore, CT 
image segmentation can be performed by setting the thresh-
old value below or above which voxels will be allocated to 
one or another set, respectively. Global thresholding, which 
uses the same threshold value for binarizing the whole 
image, can be performed manually (Baveye et al., 2010; 
Moreira et al., 2012) or automatically (Andrä et al., 2013; 
Daly et al., 2017; Iassonov et al., 2009; Sezgin and Sankur, 
2004; Schläuter et al., 2014). A semi-automated approach 
can also be used (Latief et al., 2017). 

However, a CT image is not an ideal representation 
of X-ray absorption in a given matter. The space in a 3D 
digital image is discretised, phase boundaries do not usu-
ally coincide with boundaries of voxels, and dimensions of 
some particles can be below the CT resolution (Jones and 
Feng, 2016). Additionally, other scanning artifacts, such as 
noise, beam hardening or scattered X-rays (Helliwell et al., 
2013; Houston et al., 2013; Wildenschild et al., 2002), can 
reduce the accuracy of global thresholding. 

Another approach involves locally-adaptive segmen-
tation methods (Hapca et al., 2013; Katuwal et al., 2018; 
Martín-Sotoca et al., 2018; Porter and Wildenschild, 2010). 
Some of these have been designed especially for binarising 
the soil media  (Hapca et al., 2013; Martín-Sotoca et al., 
2018) which utilize spatial information beside the gray le- 
vel value to assign each voxel to a pore-space or soil matrix. 
Yet another approach uses both the global thresholding 
and the locally-adaptive methods (Voltolini et al., 2017a). 
Although local segmentation methods are known to be gen-
erally more accurate, they may be more sensitive to various 
imperfections of a CT reconstructed image. Furthermore, 
local thresholding methods are much more computationally 
demanding.  For these reasons, global thresholding algo-
rithms are still frequently used in practice. 

The global thresholding methods considered to be suita-
ble for soil images (Hapca et al., 2013) include Otsu (1979) 
and Ridler’s techniques (Ridler and Calvard, 1978). The 
Ridler’s method, being an iterative self-organizing data 
analysis technique, is a simple thresholding method which 
finds application in the study of soil images (Rab et al., 
2014; Wang et al., 2011) and images of other porous mate-
rials (Chen et al., 2018; Liu et al., 2013; Than et al., 2017).

To ensure the correctness of CT-based soil charac-
terizations, it should be checked whether the 3D model 
correctly reproduces the actual pore network of the sample. 
Validation can be performed by comparing the param-
eters estimated on the basis of a 3D image with those 
measured in the laboratory. Some of them, like porosity, 
can be obtained directly from a CT image analysis (Smal 
et al., 2018) whereas other demand a modelling process. 
Hydraulic conductivity is a parameter that can be easily  
obtained through laboratory measurements and estimated 
in a computer simulation. There are three main approaches 
to pore-scale modelling, i.e. the lattice Boltzmann method 
(Gao et al., 2015; McClure et al., 2014), the pore network 
modelling (Bultreys et al., 2015; Ngom et al., 2011) and the 
Navier-Stokes (NS) model (Icardi et al., 2014; Muljadi et 
al., 2016). NS models are differential equations which can 
be discretised in different manners, e.g. by means of the 
finite volume method (FVM), the finite difference method 
(FDM) or the finite element method (FEM). The FVM is 
popular for its computational efficiency (Bultreys et al., 
2016; Meakin and Tartakovsky, 2009) and for the use of 
unstructured meshes that can be applied easily to complex 
pore space geometry.

The thresholding step, which usually begins with image 
analysis procedures, seems to have a crucial impact on the 
obtained results. This is especially true for the analysis of 
soil which is a heterogeneous medium that is prone to errors 
caused by improperly made image binarisation. The impact 
of the thresholding method on porosity determination for 
soil media has already been extensively investigated, e.g., 
by Baveye et al. (2010). Also the impact of thresholding on 
modelling of the soil water retention curve (SWRC) and 
deduced from the SWRC unsturated water conductivity 
was investigated by Beckers et al. (2014). Although seve- 
ral works exist which discuss the possible impact of the 
segmentation step on different soil media properties, the 
authors, using their best knowledge, have not come across 
any analysis related to the possible impact on the modelling 
of saturated water conductivity. The aim of our work was to 
evaluate the impact of the possible thresholding inaccuracy 
on saturated water conductivity estimations. The uncer-
tainty in determining other soil pore-space characteristics, 
such as total porosity and image specific surface, was also 
investigated.  

MATERIALS AND METHODS

The paper outline is as follows. The work is based on the 
analysis of four soil cores which were CT-scanned, whereas 
3D images of samples were thresholded using two different 
algorithms. Total porosity and specific surface were deter-
mined for binarised images. For the same images, saturated 
water conductivity was numerically estimated using NS 
equation-based modelling. Sensitivity indices were esti-
mated, and the obtained results were analyzed.
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For the purpose of this study, four soil cores were tested, 
and two soil types (described in Table 1) differing in micro-
structure were chosen. Samples 1 and 2 are mineral (Orthic 
Luvisol) soil while samples 3 and 4 are organic peat soil 
(Eutric Histosol). Cores were sampled from two different 
locations by taking two samples from each location. The 
samples were taken from arable layers, five centimetres 
below the soil surface. Sampling took place in the spring 
2017 when soil moisture was high enough to use plastic 
cylinders for sampling. Soil moisture also allowed for the 
sampling to be performed without the risk of soil structure 
destruction. Plastic cylinders were 45 mm in diameter and 
40 mm in height, and they were not as strong and stiff as 
metal ones but had a lower X-ray absorbance. The collected 
samples remained in cylinders for CT scans, in order not to 
change the structure of the sampled soil. Just after their col-
lection, the samples were sealed with Parafilm to prevent 
water loss due to evaporation, which could lead to shrink-
ing of the soil sample and, consequently, to changes in its 
structure.

The samples placed in plastic cylinders were exam-
ined using an X-ray computational micro-tomograph GE 
Nanotom 180S at the IA PAS X-ray CT facility (Lamorski, 
2017). Parameters of the X-ray tube were as follows: the 
accelerating voltage 100 kV, the cathode current 150 μA, 
and a tungsten exit window. An exit window filter was not 
used. During the scan, a series of 1200 2D images were 
registered by rotating the sample by 0.3˚ stepwise for a full 
360-degree rotation. For noise reduction purposes, each 2D 
image was averaged out of 20 records that were 750 ms 

each, which were acquired with a slight (by a few pixels) 
random perpendicular angle to the X-ray beam detector 
movements. The 2D images were registered with a 14-bit 
gray level depth by a flat panel detector with a resolution of 
2 284x2 304 pixels.

After the X-ray CT examination of the samples, satu-
rated water conductivity of the cores was measured 
repeatedly, using the constant head method (Eijkelkamp 
Soil and Water, The Netherlands) (Table 1). 

The 3D reconstruction, using the collected 2D images, 
was performed with CT software (datos|x version 2.0.1, 
General Electric). It was necessary to use the software 
beam hardening correction offered by CT reconstruction 
software. The spatial resolution of the 3D reconstructed 
volume, i.e. voxel size, was 23.6 µm in each direction. The 
3D images were saved as 16-bit tiff files. The selection of 
the cylindrical region of interest (ROI) for further process-
ing, based on  the reconstructed 3D volume, as well as the 
filtering process were performed using Avizo 9 (Thermo 
Fisher Scientific). The ROI had a cylindrical shape with 
a diameter 1 878 pixels. The ROI height were slightly dif-
ferent for different samples and are presented in Table 1. 
The image was filtered twice for noise reduction, using 
a 3D median filter with a cross-shaped 3D kernel, with a dia- 
meter equal to 3 pixels. After the thresholding, pore size 
distribution was performed, which consisted of two steps, 
i.e. pore-space splitting and labelling. After the labelling, 
the dataset was generated with individual pore volumes and 
pore equivalent diameters.

Ta b l e  1. Soil samples basic information: sample ID, FAO soil classification, measured saturated water conductivity and parameters 
obtained from analysis of CT imaging of samples

Sample ID 1 2 3 4
FAO soil classification Orthic Luvisol Eutric Histosol

ROI length (px) 1515 1564 1515 1467
Ksat sensitivity (m s-1 per gray level unit) 2.07-05 5.01E-05 5.20E-06 8.84E-05
Total porosity sensitivity (m3 m-3 per gray level unit) 0.0017 0.0012 0.0026 0.0058
Specific surface sensitivity (m-1 per gray level unit) 14.19 6.37 31.22 43.77
Measured SWC (m s-1)
(standard deviation in brackets)

1.74E-04 
(4.45E-06)

2.82E-04
(4.67E-06)

5.44E-05
(1.22E-06)

4.34E-04
(2.59E-06)

Thresholding method: default 
Threshold value (-) 132 105 88 82
Image total porosity (m3 m-3) 0.15 0.13 0.17 0.33
Image specific surface (m-1) 1323.89 744.01 2097.19 3286.10
Estimated saturated water conductivity (m s-1) 1.03E-03 1.36E-03 1.66E-04 2.22E-03

Thresholding method: isodata 
Threshold value (-) 91 88 61 63
Image total porosity (m3 m-3) 0.09 0.11 0.10 0.22
Image specific surface (m-1) 741.92 635.70 1254.29 2454.45
Estimated saturated water conductivity (m s-1) 1.81E-04 5.08E-04 2.57E-05 5.41E-04
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The filtered 16-bit 3D images of soils were converted 
into an 8-bit grayscale. The histograms (for the whole 3D 
image) of the scanned samples are shown in Fig. 1. Three of 
them are clearly bimodal (i.e. one can observe two maxima 
in the histogram) although the peak corresponding to the 
solid is much larger than the one corresponding to the pore 
space. Then, the 3D images were thresholded to distinguish 
pore-space from the soil solid phase, within the accuracy 
level for which the µCT scan resolution was achieved. Two 
different threshold methods were applied in respect of all 
the 3D images. The thresholding was performed using the 
Fiji image processing software (Schindelin et al., 2012). 
Two global thresholding algorithms available in Fiji, i.e.  
‘Default’ and ‘Isodata’, were used to this end. Both meth-
ods are variations of Ridler’s iterative intermeans algorithm 
(Ridler and Calvard, 1978). The difference between both 
algorithms is that the ‘Default’ method uses some additional 
histogram pre-processing prior to applying the intermeans 

algorithm. The pre-processing modifies the maximum peak 
in the cases where it is more than twice higher in relation to 
the other. The images that were thresholded by the Default 
and Isodata methods will be hereinafter referred to as ‘the 
Default threshold’ and ‘the Isodata threshold’, respectively.

The process of thresholding consisted of two stages. 
Firstly, a single slice (an example of the slice is shown in 
Fig. 2) was arbitrarily chosen as the most representative 
(with no artifacts, clearly observed pores and a structure 
similar to other slices) for the whole 3D volume, based 
on which a histogram of gray values was calculated. The 
obtained gray level threshold value was used rather than 
binarizing the whole 3D volume. This approach was based 
on the selection of a representative slice for threshold calcu-
lation, instead of determining separate thresholds for each 
slice in the stack to avoid incorrect thresholding results 
for the slices without proper pore representation (Iassonov 
et al., 2009).

Fig. 1. Histograms of the scanned soil cores: a) - sample 1, b) - sample 2, c) - sample 3, d) - sample 4 with marked values of the isodata 
threshold (red line) and the default threshold (blue line).

Fig. 2. A selected slice from Sample 1 stack: a) an 8-bit gray level image, b) default thresholding c) isodata thresholding.
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In this study, two different algorithms of thresholding 
were evaluated. The reasons for choosing these algorithms 
were of a twofold nature. Firstly, they are commonly used 
for porous media studies including soils (Hapca et al., 2013) 
and, secondly, the evaluation of different algorithms based 
on the thresholding of selected slices from soil cores shows 
more optimal results in comparison with other approaches. 
There is one specific aspect of the algorithms in question 
which qualifies them for application to the soil core seg-
mentation task, i.e. they do not rely on the assumption 
of the bimodal character of the histograms of segmented 
images as does, for example, the popular Otsu method. It is 
uncommon to see true bimodal histograms in X-ray CT soil 
related studies, due to the fact that CT-detected pores only 
form a small fraction of the scanned core volume ≲0.2. The 
Otsu method has also been used in soil related CT studies, 
e.g., in the work by Jarvis et al. (2017).  

The threshold values are presented in Table 1 in a 256- 
degree scale, where 0 corresponds to the black voxels and 
255 represents white voxels.

In the thresholded binary image, there are two types of 
voxels representing pore-space and soil solid phases. Such 
a voxelized surface of the pore-space would not be a good 
representation of the physical surface. It was interpolated 
using the triangulation method with a BoneJ plugin (Doube 
et al., 2010) and then saved as a STL file for further use in 
numerical mesh generation. The image total porosity and 
the image specific surface were also determined (Table 1). 
The image specific surface σ (m-1) was calculated as the 
area of a triangulated surface (m2) divided by the ROI 
volume (m3).

For transport modelling, NS equations were used. The 
set of NS equations comprises the momentum balance Eq. 
(1) and the continuity Eq. (2), where u is a velocity vector 
(m s-1), ρ is fluid density (kg m-3), p is pressure (kg m-1 s-2), 
µ is dynamic viscosity (kg m-1 s-1), τ is a strain rate ten-
sor (s-1), F are external forces (kg m s-2) (Eq. (3)), and g is 
gravitational acceleration (m s -2):

(1)

(2)

F = p g . (3)
It was implemented by means of the OpenFOAM CFD 

software, using FVM differential equation discretisation. 
For the simulation purpose, a non-compressible steady-
state laminar single phase flow was assumed. The flow 
domain was the CT-determined sample macropore network 
while the remaining part of the sample was treated as a non-
permeable solid body. 

OpenFOAM uses unconstrained and unstructured 
meshes which are especially suitable for the meshing of 
complex pore-space geometry. The numerical mesh was 
created on the basis of the STL file with a triangulated 
surface of the soil solid phase, using snappyHexMesh – 
a native OpenFOAM meshing tool which allows for the 
meshing of non-uniform complex geometries. Mesh cells 
were generated only for the pore-space regions of soil, 
and for additional thin layers connected with pores at both 
the input and output on which boundary conditions were 
enforced. However, OpenFOAM software focuses on gen-
erating high quality mesh, although in such a complex 
meshed geometry as in the case of pore-space some of the 
mesh cells do not always meet quality constraints. To avoid 
such potential problems, the created mesh was checked for 
the occurrence of cells with highly skewed faces. Faces 
with the skewness value being higher than four were delet-
ed. The presence of cells with highly skewed faces could 
impair the quality of the results and make the calculations 
unstable. The number of deleted cells is shown in Table 2. 
As it did not exceed 0.003% of the total number of cells, 
it can be assumed that the impact of deleted cells on the 
geometry of the whole image was negligible.

The numerical mesh simulations were performed using 
a steady-state simpleFoam solver. The appropriate bound-
ary conditions were set up in the simulation process, i.e. the 
value of fluid velocity was fixed to 1e-5 m s-1, and the pres-
sure was established at 0 Pa on the input patch with zero 
gradient Neuman conditions on the output patch. The input 
and output patches were equivalent to the top and bottom 
portions of the soil sample. No-slip boundary conditions 
were applied to the pore walls.

The water flow simulation mimics the constant head 
saturated conductivity measurement principle. Saturated 
hydraulic conductivity Ks (m s-1) can be estimated based 

Ta b l e  2. Statistic of numerical mesh used for SWC modeling (total No. of cells – total number of cells in the mesh, No. of cells 
removed – number of cell removed from mesh due to quality constraints)

Sample ID
Default thresholding Isodata thresholding

Total no. of cells No. of cells removed Total no. of cells No. of cells removed
1 15 902 446 122 8 972 655 52
2 10 860 072 19 7 591 906 21
3 10 962 708 313 421 75 764 312
4 24 569 148 631 14 582 346 330



B. GACKIEWICZ et al.54

on information about pressure difference Δp (kg m-1 s-2) 
between the input and output patches, fluid velocity at the 
input patch u (m s-1) and flow domain length Δl (m): 

, (4)

where: g (m s-2) stands for gravitational constant and ρ 
(kg m-3) for fluid density.

A sensitivity analysis allows for estimating the impact 
of the perturbation in the model’s input parameters on the 
model’s output.  The local sensitivity analysis is used for 
sensitivity estimation for a given value or a set of selected 
values of input parameters. On the other hand, the global 
sensitivity analysis allows for the general quantification of 
sensitivity for the whole range of input parameters.  

More general approaches are available for sensiti- 
vity estimation, including the one-factor-at-a-time method 
(OAT), the Morris method or variance decomposition 
based methods (Saltelli et al., 2002). In the simplest cases 
where local sensitivity estimation is needed and models 
input parameters are not correlated, a differential sensiti- 
vity analysis can be performed (Hamby, 1994) instead. 

The differential sensitivity analysis is based on the 
assumption that sensitivity coefficient Si for a particular 
independent variable Xi may be estimated by the partial 
derivative of dependent variable Y (i.e. the model’s output) 
with respect to an independent variable (i.e. the model’s 
parameter):

(5)

Obviously, in practical applications partial derivatives 
have to be estimated by finite differences because the mo- 
dels are not usually described by analytical functions which 
could be differentiated.  

RESULTS AND DISCUSSION

The intermeans algorithm based thresholding proce-
dures, which was used in this study, unlike the popular Otsu 
method, does not rely on the histogram bimodality assump-
tion. In the soil samples studied, the problem of histogram 
non-bimodality can also be observed, as evidenced in the 
histograms for samples 2 and 4 (Fig. 1b, d). These samples 
are bimodal, although the maximum values related to pores 
are much lower than the maximum values related to the 
soil matrix. However, it is hard to treat the histograms of 
samples 1 and 3 as bimodal, especially since the histogram 
of sample 3 completely lacks this feature (Fig. 1a, c).

Two different variations of the iterative intermeans 
algorithm were evaluated in this study, i.e. Default and 
Isodata. For the examined samples, the threshold values 
were always higher in the case of the Default thresholding 
algorithm. The higher value of the threshold is connected 
with a higher number of voxels categorized as correspond-
ing to the pore space and, hence, with higher porosity. As 

can be observed in Fig. 1, different values of thresholds 
are determined using different validated algorithms. The 
Isodata threshold algorithm always places a lower value of 
the threshold which means that the smaller part of the sam-
ple’s volume is considered to be a pore-space. Differences 
in the threshold levels determined by these two algorithms 
ranged from 17 to 41 units, where 8-bit depth and 256 gray 
levels were used for CT image representation. Similar va- 
lues of the threshold levels achieved by different algorithms 
were reported (Smet et al., 2018) for soil media. A sample 
slice from the stack representing sample 1 is presented in 
Fig. 2. It can be seen that the default thresholding algo-
rithm area of the pores on this cross-section is bigger than 
in the case of the Isodata algorithm. The differences in total 
porosity that were detected using CT for the presented sam-
ples were as follows: 0.06, 0.02, 0.07 and 0.11, respectively 
(Fig. 3). It means that the minimum change in porosity 
was 15%, and the maximum change was 40%, in rela-
tion to the porosities determined by means of the Default 
algorithm (Table 1). Both porosities, determined for the 
Default and Isodata thresholded media, are well-correlated, 
R2 = 0.9 (Fig. 4).

These results show that the potential impact of the im- 
proper selection of the thresholding method on porosi- 
ty results is high, and this phenomenon has already been 
identified in literature (Baveye et al., 2010). The sensitivity 
indices which were calculated and analyzed in the study 
confirm this point of view (Table 1). If we assumed the pos-
sible uncertainty in the threshold level determination at ten 
units, corresponding to 4%, it would cause uncertainty in 
the total porosity determination of at least 10% for sample 1 
(with 17% being the highest value calculated for sample 4). 
So, an erroneous determination of the threshold value 
propagates a porosity determination error and boosts it sub-
stantially. It is worth mentioning that 10 uncertainty units 
used in the present discussion reflect a realistic assumption 
as far as differences in the threshold level determination 
are concerned (Wang et al., 2011). The differences in the 
threshold level determination in soil studies may be even 
higher (Beckers et al., 2014). 

Threshold changes exert a varied impact on pores with 
different sizes, which is reflected in the cumulative pore 
distribution (Fig. 5). In the case of samples 1 and 2, pores 
with different volumes increase proportionally for the 
samples thresholded by means of the Default and Isodata 
algorithms. In the case of samples 3 and 4, the volume of 
pores with an equivalent radius up to ~0.1-0.2 mm increas-
es proportionally whereas pores with higher radiuses, up 
to ~0.7 mm, dominate in the case of the Isodata thresh-
olded samples. Finally, once the radius value of ~0.7 mm 
was achieved in both samples 3 and 4, thresholded by the 
Default algorithm, an increase in the volume of largest 
pores wass observed. It means that the larger pores in sam-
ples 3 and 4 predominantly contribute to an increase in the 
total pore-system volume of these samples.
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As in the case of total porosity, the image specific sur-
face is also dependent on the threshold methods applied in 
the image analysis workflow (Fig. 3). The highest change 
in specific surface is observed for sample 1 – 80%, and 
smallest for sample 2 – 17%, in relation to the default 
thresholding method (Table 1). Both characteristics are 
well-correlated, R2 = 0.95 (Fig. 6). The sensitivity analysis 
allows us to estimate the potential impact of the thresh-
old level determination inaccuracy on the image specific 

surface determination. Assuming the same threshold deter-
mination uncertainty, i.e. reaching ten units of inaccuracy, 
the specific surface determination would be at least 64 (m-1) 
and maximum inaccuracy would be 437 (m-1). 

Two simulations based on different thresholding meth-
ods were made, and different values of saturated hydraulic 
conductivity estimations were obtained (Fig. 7). Values of 
the SWC estimated with the NS model on the basis of the de- 
fault threshold are well correlated with the corresponding 

Fig. 3. Values of the image total porosity (a) and the image specific surface (b) determined on the basis of 3D soil images thresholded 
with the Isodata method (red) and the Default (green) method.

Fig. 4. Relationship between the image total porosity on the basis of the Isodata and Default thresholded soil images (p-value for the 
linear model presented: 0.05208).
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Fig. 5. Cumulative pore volume distributions for pore spaces (R-equivalent pore radius) determined using the Default algorithm (con-
tinuous line) and the Isodata algorithm (dashed line). a – sample 1, b – sample 2, c – sample 3, d – sample 4.

Fig. 6. Relationship between the image specific surfaces calculated on the basis of the isodata and default thresholded soil images 
(p-value for the linear model presented: 0.02605).
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values estimated by means of the Isodata threshold, 
R2 = 0.83. The Isodata-based estimations are, on average, 
three times lower than the Default thresholding-based esti-
mations (Fig. 8). Both estimations are highly correlated 
with the measured values of SWC (R2=0.98 for Default 
thresholding and R2 = 0.88 for Isodata thresholding), but 
the Default threshold-based simulations overestimate five 
times saturated water conductivity (Fig. 9), when compared 
with the measured values. The Isodata threshold-based 
simulations are much accurate, with only a slight ~1.5 
overestimation. 

The local sensitivity indices calculated for SWC 
(Table 1) show a strong dependence of the SWC on the 
potential uncertainty related to  threshold level determi-
nation. The lowest Ksat sensitivity coefficient value is 
~5.2e-6, and the highest ~8.8e-5 (m s-1 per gray level unit]. 
If the previous assumption of the  uncertainty related to 
threshold level determination was adopted at 10 gray level 
units, it would lead to the uncertainty in SWC estimation 
ranging from 5.2e-5 to 8.8e-4 (m s-1), based on the results 
of our study. If these errors were compared to the SWC 
estimations based on the Default threshold, they would cor-
respond to relative error values of 20 and 40%, respectively.

Fig. 7. Saturated water conductivity: estimations based on differently-thresholded images and laboratory measurements.

Fig. 8. Relationship between the saturated hydraulic conductivity estimated on the basis of the isodata and default thresholded soil 
images (p-value for the linear model presented: 0.09025).
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Wei Q., and Sezgin M., 2010. Observer-dependent varia-
bility of the thresholding step in the quantitative analysis of 
soil images and X-ray microtomography data. Geoderma, 
157, 51–63. doi:10.1016/J.GEODERMA.2010.03.015

Beckers E., Plougonven E., Roisin C., Hapca S., Léonard A., 
and Degré A., 2014. X-ray microtomography: A porosity-
based thresholding method to improve soil pore network 
characterization? Geoderma, 219-220, 145-154, doi:10. 
1016/j.geoderma.2014.01.004

Bultreys T., De Boever W., and Cnudde V., 2016. Imaging and 
image-based fluid transport modeling at the pore scale in 
geological materials: A practical introduction to the current 
state-of-the-art. Earth-Science Rev., 155, 93-128. 
doi:10.1016/J.EARSCIREV.2016.02.001

Bultreys T., Van Hoorebeke L., and Cnudde V., 2015. Multi-
scale, micro-computed tomography-based pore network 
models to simulate drainage in heterogeneous rocks. Adv. 
Water Resour., 78, 36-49. doi:10.1016/J.ADVWATRES. 
2015.02.003

Chen X., Verma R., Espinoza D.N., and Prodanović M., 2018. 
Pore-scale determination of gas relative permeability in 
hydrate-bearing sediments using X-ray computed micro-
tomography and lattice Boltzmann method. Water Resour. 
Res. 54, 600-608. doi:10.1002/2017WR021851

Daly K.R., Cooper L.J., Koebernick N., Evaristo J., Keyes S.D., 
van Veelen A., and Roose T., 2017. Modelling water 
dynamics in the rhizosphere. Rhizosphere, 4, 139-151. 
doi:10.1016/J.RHISPH.2017.10.004

Daly K.R., Tracy S.R., Crout N.M.J., Mairhofer S., 
Pridmore T.P., Mooney S.J., and Roose T., 2018. 
Quantification of root water uptake in soil using X-ray com-
puted tomography and image-based modelling. Plant. Cell 
Environ., 41, 121-133. doi:10.1111/pce.12983

Doube M., Klosowski M.M., Arganda-Carreras I., Cordelières 
F.P., Dougherty R.P., Jackson J.S., Schmid B., 
Hutchinson J.R., and Shefelbine S.J., 2010. BoneJ: Free 
and extensible bone image analysis in Image J. Bone, 47, 
1076-1079. doi:10.1016/j.bone.2010.08.023

CONCLUSIONS

1. The results of this study demonstrate that threshold-
ing-related errors may have a huge impact on the estimation 
of saturated hydraulic conductivity in soils, easily reaching 
a relative error that accounts for 50% of the saturated water 
conductivity reference value. 

2. Even small shifts in the threshold level can cause 
huge changes in saturated water conductivity estimations. 
For instance, a threshold shift of 6.7% for sample 2 caused 
more than a two-fold increase in the value of saturated 
hydraulic conductivity.

3. Soil images are hard to threshold automatically 
because their histograms do not display explicit bimodali- 
ty, which eventually leads to thresholding errors. This is 
caused by the relatively small pore-space fraction observed 
in the computed tomography images of soils.

4. The sensitivity of computed tomography-based esti-
mations of saturated water conductivity on thresholding 
shows that the values estimated through modelling should 
be validated. 
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